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Abstract

A ferroelectric material is characterized by its ability of changing the polar direction in the presence of applied
electric field. This change of polar direction is called domain switching or polarization reversal. The domain switching
occurs in two steps: the nucleation of new domain and the propagation of domain boundary. Recently, “Kim” (Kim,
S.J., 2000. Int. J. Solids Struct. 37, 1145-1164) has shown that a certain amount of heat is generated from a moving
domain boundary during domain switching. In this paper, we study the effects of the heat generated from a moving
domain boundary under an application of electric field. The finite difference algorithm of Kim and Abeyaratne (Kim,
S.J., Abeyaratne, R., 1995. Cont. Mech. Thermo 7, 311-333) is applied to the model developed by Kim (2000). The
results of calculation are qualitatively consistent with the experimental observation of Hill et al. (Hill, M.D., White,
G.S., Hwang C.S., Lloyd 1.K., 1996. J. Am. Ceram. Soc. 79, 1915-1920) © 2001 Elsevier Science Ltd. All rights re-
served.
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1. Introduction

One of the characteristics of a ferroelectric material is that it is polarized in the absence of applied electric
field at a temperature below the so-called Curie point. This polarization is called spontaneous polarization.
An application of electric field may switch the polar direction of the material and this is commonly called
polarization reversal or domain switching (Jona and Shirane, 1962). The domain switching occurs in two
steps: first, the new domain is nucleated at some critical level of applied electric field, and next, the interface
between the two domains propagates leading to the growth of the new domain. As particles cross this
moving interface or domain boundary, they transform from one type of domain to the other one, and
according to Kim (2000), this is accompanied by the release of heat. This leads to an increase in the
temperature near the domain boundary and significantly affects the electrical response of the body. The
purpose of the present paper is to investigate this effect of the heat generated from a moving domain
boundary during an electric field-induced ferroelectric domain switching.
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Various continuum models for ferroelectric domain switching have been suggested in various scales (e.g.,
Hwang et al., 1995; Jiang, 1993, 1994; Ghandi and Hagwood, 1996). But none of them studied on the effect
of the heat generated during the domain switching process. However, there have been some experimental
investigations on this subject. Hill et al. (1996) have applied electrical cyclic-loading on a PZT ceramic and
have measured the temperature of the sample. They observed that the temperature of the sample increased
up to a steady state temperature of 180°C. The present study has been motivated by this experimental
observation.

Recently, Kim (2000) has developed a one-dimensional continuum model for ferroelectric materials. His
model consists of three parts: Helmholtz free energy function for each phase of the material, the kinetic
relation to control the speed of phase boundary and the nucleation criterion to determine the conditions
under which the new phase is nucleated. He showed that there exist two mechanisms by which heat is
generated from a moving domain boundary. One is the energy dissipation occurring at the domain
boundary, which is represented as the product of the driving force acting on the boundary and the speed of
the boundary. The other is from the difference in entropy between the two types of domains across the
domain boundary. He considered a very slow electrical loading rate. So, the heat generated at the moving
interface diffuse relatively rapidly and the temperature of the body will equilibrate that of the surrounding
environment, even as the transformation is still progressing. In this case, the underlying thermoelectrical
processes can be modeled as being isothermal, i.e., one can assume that every particle of the body remains
at the environmental temperature at every instant of time. Some calculations were carried out based on this
isothermal assumption and the results were qualitatively compared with experimental observations in his
work.

In the present paper, we consider a somewhat faster electrical loading rate. Then, the temperature field in
the body will not be uniform any longer and the domain boundary is regarded as a moving heat source. In
order to understand the effect of such local heating, we study the response of a thermopolarizable bar that is
contained in a constant environmental temperature and that is subjected to a prescribed electrical loading-
history. The model we use consists of a three-well Helmholtz free-energy potential that describes the
thermoelectrical behavior of each phase, a kinetic law based on thermal-activation theory which controls
the rate of a domain boundary, and a nucleation criterion based on a critical value of energy barriers
between phases that signals the initiation of the transformation. The reason we have a three-well energy
function is that at low temperatures, the high temperature paraelectric phase is regarded as an unstable
phase between the two variants of ferroelectric phase and therefore its value of Gibbs free energy is needed
to derive the kinetic relation and nucleation criterion. The main features of our model are as follows. First,
the energy equation derived from the model is generally a nonlinear equation and involves coupling be-
tween thermal and electrical effects. Similar coupling also exists in the jump condition that represents the
energy conservation on the domain boundary. The heat generated at the moving domain boundary is not
only due to the energy dissipation at the domain boundary, but also due to the latent heat caused from the
difference in specific entropy between the two variants of ferroelectric phase across the boundary. Finally,
the domain boundary propagates at a speed that is controlled by the kinetic relation, which depends on the
local temperature and electric field.

In Section 2, we outline the general theoretical framework within which the present study is carried out.
In Section 3, we describe the particular constitutive model that we use. The basic thermoelectrical responses
are formulated in Section 4, and finally, in Section 5, we show and discuss the results of calculations.

2. Theoretical framework

In this section, we set out the basic equations which describe our model. We consider a one-dimensional
bar, which occupies the interval 0 <x< L in a reference configuration and whose mass density in that
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configuration is p. The bar is placed between and in contact with two electrode plates of a condenser that is
connected to a cell that provides electromotive force; see Fig. 1.

The applied electric field e(¢) and the temperature 6y(¢) of the environment surrounding the bar are
prescribed. Initially, the bar is at the same temperature as the environment. Thus,

0(x,0) = 00(0). (2.1)

As the bar is composed of a ferroelectric crystal whose polar axis is normal to the electrodes, it is polarized
either parallel or antiparallel to the electric field. Therefore, a thermoelectric process of the bar is char-
acterized by the polarization intensity field p(x,¢) and the temperature field 0(x,) where x denotes the
location of a particle in the reference configuration and ¢ is time.

In this study, the ferroelectric crystal is modeled as a thermopolarizable solid, which is characterized by
its Helmholtz free-energy potential per unit mass ¥(p, 0). For such a material, the electric field ¢ and en-
tropy per unit mass x at a particle are related to p and 6 by the constitutive relations

G e(.pv 6) = plpp(pa 0)7 n= '7(17’ 0) = _lp(-?(pa 0) (22)

In the next section, we shall write down the particular form of 1/, which may exist in one of multiple phases
for suitable values of electric field and temperature.

At each instant ¢ during a thermoelectrical process, the polarization intensity p(x,¢) and temperature
gradient 0,(x,¢) vary smoothly within the bar except at domain boundaries; across a domain boundary,
they suffer jump discontinuities. The electric field is constant along the bar and the temperature field is
assumed to remain continuous throughout the bar. Away from a domain boundary, the first and second
laws of thermodynamics require that

—qx + pr = pOn,, q0, <0, (2.3)

respectively, where ¢(x, ¢) is the heat flux in the +x-direction and r(x, ¢) is the heat supply rate (to the bar)
per unit mass. At a domain boundary x = s(¢), one has the associated jump conditions

g —q =fs+p0(n" —n7)s, f5=0, (2.4a,b)
where f'is the driving traction or driving force acting on the domain boundary, which is defined by
f=pW" =) —elp” —p). (2.5)

In Egs. (2.4a,b) and (2.5), we have written 2 = h* () = h(s(t)",t) for the limiting values of a field A(x, ¢) as
the domain boundary x = s(¢) is approached from either side. In order to interpret the driving traction from
the energy point of view, we introduce the potential energy per unit reference volume G(p;0,e) of the
material:

G(p; 0, e) = Plp(Py 0) —ep. (26)

The value of the potential energy at an extremum of G(+; 0, ¢) coincides with the Gibbs free energy per unit
reference volume

g(p,0) = p(p,0) — py,(p, O)p. (2.7)
Electrod Specimen
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Fig. 1. The ferroelectric specimen placed between two electrode plates of a condenser connected to a cell of electromotive force.
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In the present setting, the driving traction also equals the jump in Gibbs free energy across the domain
boundary: f =g" —g~.
In addition to the constitutive relations (2.2), we also have a heat conduction law

q=—k(p,0)0,, (2.8)
and a kinetic law
$=V(1.0), &

the former governs the flux of heat at points away from a domain boundary, while the latter controls the
motion of a domain boundary. The heat conductivity k£ and the kinetic response function V are charac-
teristic of the material.

In this paper, we consider a thermoelectrical process during which the bar involves only a single phase of
the material for some initial interval of time, and two distinct phases at subsequent times. The kinetic law
(2.9) controls the evolution of an existing domain boundary and therefore is operational only once the bar
is in two-phase states. The initial transition of the bar from a single-phase configuration to a two-phase
configuration is controlled by a nucleation criterion. The particular nucleation criterion that we shall use in
our calculations will be described in the next section.

Next, we turn to thermal boundary conditions at the ends of the bar, and to the heat supply term r. With
regard to the former, we suppose the heat transfer between the bar and the surrounding medium through
the end surfaces is governed by Newton’s law of cooling, so that

k0.(0,1) = 5[9(05 t) - 90<t)]’ kO,(L, t) = _5[0(1‘7 t) - Qo(t)L (210)

where ¢ > 0 is a constant and 0y(¢) is the temperature of the environment; the special cases ¢ = 0 and
& = oo correspond to the respective cases in which the ends of the bar are perfectly insulated and have a
prescribed temperature 6,(z).

The heat supply term r, in the present one-dimensional study, represents the heat transfer across the
lateral surface of the bar. We shall take this too to be controlled by Newton’s law of cooling:

r(x,t) = ={[0(x, 1) — Oo(2)], (2.11)

where { > 0 is a constant.
Finally, we introduce the electric displacement defined by

d(x,1) = soe(x, ) + plx, 1), (2.12)

where ¢ is the permittivity of free space.

3. Constitutive model

We now describe the particular constitutive model that we shall use in our detailed calculations. This
model was designed to be as simple as possible, while at the same time explicitly building upon the fact that
the essential underlying mechanism is the transition of the material from one energy-well to another. The
model incorporates the multiple-well structure of the free-energy function and includes an explicit kinetic
rule based on the notion of thermal activation, as well as a nucleation criterion depending on the value of
critical energy barrier. Even though here we introduce a three-well energy function, we restrict our attention
to the two variants of ferroelectric phase at low temperatures.
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3.1. Helmholtz free-energy

In this study, we use the Helmholtz free energy function constructed by Kim (2000) for our calculations.
The expression for i is given sectionally on the ( p, §)-plane shown in Fig. 2, where the regions D;, D, and
D; are identified with the three phases of the material P, F™ and F~, respectively. The temperature levels 0,
and 6,, denote two critical values of temperature: for 8 > 6,, the material exists only in its paraelectric form,
whereas for 0 < 0,, the material exists only in its ferroelectric forms.

In this paper, we will focus only on the range of temperature less than 0,,, but we describe the complete
energy function, which is valid on the temperatures below 0,, and which includes the equation for the high
temperature paraelectric phase. Then,

(x/2)p* + pcd(1 — log(0/0r)) on Dy,
pY(p,0) = (2/2)(p — pr)* + 2B(p — pr)(0 — Or) + pcO(1 — log(0/0r)) — pir(1 — 0/07) on D,
(1/2)(p + pr)’ = 1B(p + pr)(0 — 07) + pcO(1 —log(0/0r)) — pix(1 — 0/0r) on Ds.

(3.1)

At each temperature below 60,,, the Helmholtz free-energy function is a piecewise quadratic function of
polarization intensity that is convex on D, D, and D; and concave on the remaining unshaded portion of
the (p, 0)-plane. At fixed temperatures between 0,, and 0y, it is a three-well potential, with the local minima
occurring at the smallest, intermediate and largest values of polarization intensity corresponding to F~, P
and F*, respectively, whereas at a temperature below 0,, it is a two-well potential corresponding to Ftand
F~. At the temperature O, the three local minima have the same height and so the three phases F*, F~ and
P have the same value of Gibbs free energy. Thus, the material parameter Ot represents the transformation
temperature. The values of Y at the two ferroelectric energy-wells coincide at every 0 at which these energy-
wells exist. For 0 > 0r, the ferroelectric wells are higher than the paraelectric well, while for 6 < 0r they are
lower, so that paraelectric is favorable at higher temperatures, ferroelectric at lower temperatures. It can be
shown that the material parameter At represents the latent heat of the paraelectric — ferroelectric transi-
tions at the transformation temperature.

F- Ferroelectric [ ] Paraelectric KRN F*+ Ferroelectric

Fig. 2. Regions Dy, D,, and Dj; in the (p, 0)-plane.
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Therefore, the material at hand is characterized by the same inverse susceptibility at constant temperature
v and specific heat at constant polarization ¢ of the phases; the pyroelectric coefficients 0, —ff and f of the
respective phases P, F* and F~; the electric field-free transformation temperature 6r; the mass density p in
the reference state; the latent heat Ar at 6 = Oy and the transformation polarization intensity pr. A detailed
discussion of the construction of this and a related potential as well as a description of their response during
isothermal processes may be found in Kim (2000).

The electric field e and entropy 5 at a particle are related to p and 0 by the constitutive relations
e = py,(p,0) and n = —yy(p,0). The electric field-response function is therefore given by

piZ on Dy,
e(p,0) = q x(p—pr) + 1p(0 - 0r) on Dy, (3.2)
x(p+pr) — xp(0 —0r) on Ds;.

In this paper, we are interested in the effects of the heat generated from a moving domain boundary during
F" < F~ polarization reversals and so from now on, we pay attention only to those transformations.
Consider a domain boundary located at x = s(¢) and suppose that the material on its left is in the F* variant
of ferroelectric and the material on its right is in the F~ variant of ferroelectric. Then, the driving traction
on this domain boundary may be calculated from Egs. (2.5), (3.1) and (3.2) to be

J=2{pr - p(0 —br)}e. (3-3)

In view of the dissipation inequality f§ > 0, it follows that this domain boundary cannot move to the left if
f > 0 and that it cannot move to the right if f < 0. That is, the F* — F~ transition cannot occur if f > 0
and the F~ — F transition cannot occur if f > 0. Therefore, assuming pr — (0 — 61) > 0 in the range of
temperature that we consider, we may say that

F* is favored when e > 0,

F~ is favored when e < 0. (34)

Turning next to the remaining constitutive characteristics of the material, we take the heat conductivity of
both phases to be the same, and constant:

k(p,0) = k = constant on D,, Ds. (3.5)

3.2. Nucleation criterion

If a particle always chooses the phase that is stable from all phases available to it, then the response of
the particle as the electric field is varied is fully determined by Eq. (3.4). That is, the particle is in the
ferroelectric F* variant for a positive electric field and it is in the F~ variant for a negative electric field. In
solids, however, particles can often remain for long times in states that are merely metastable and the
initiation of the transition from a metastable phase to a stable phase is controlled by nucleation criterion.
Now, we derive a specific nucleation criterion that is based on the critical value of energy barriers.
Abeyaratne and Knowles (1993) have derived a nucleation criterion for shape memory alloys based on the
same assumption.

Fig. 3 shows a schematic graph of the potential energy function G(p; 6, e) plotted versus p for a fixed pair
(6,e) at which only the two ferroelectric variants co-exist. The quantity b,;(0, e) indicated in Fig. 3 is the
energy barrier to a transformation from phase F* to phase F~ and similarly b3,(0,¢e) is that of a trans-
formation from phase F~ to F'. In order to calculate these energy barriers, we have to know the value of
potential energy at the local maxima located between the two local minima. Considering that the para-
electric phase is unstable below the temperature 6, and that the value of polarization intensity of the
paraelectric phase lies between those of the two ferroelectric variants, we may conclude that the local
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A G(p;o,e)

P

Fig. 3. Potential energy at a fixed temperature and electric field as a function of polarization intensity.

maxima corresponds to the paraelectric phase. Using Eq. (3.1) to calculate G(p; 0,¢) = pyr(p, 0) — ep leads
to the following expression for the energy barriers:

by (0,e) = {pr — B(0 — 01)} (e — eo(0)),
by (0,e) = —{pr — B(0 — 01)} (e +eo(0)),

where the electric field ey(6) is the Maxwell electric field for the P < F' transition given by

eo(0){pr — B(0 — 01)} = {p2z/0r — (1 /2)(0 — O7)} (0 — Or). (3.7)

We suppose that a particle in the F™ phase will transform to the F~ phase by nucleation if the relevant
energy barrier by; (6, e) is less than some critical number N; the associated nucleation criterion is thus given
by setting b,3(0,e) = N in Eq. (3.6). In view of the symmetry of the potential energy function G, we assume
that the critical energy barrier for the F~ — F transition is the same as that of the F* — F~ transition.
Enforcing these restrictions and combining with Eq. (3.6) leads to the following nucleation criteria for the
F* « F~ transitions:

e<ey(0)+N/{pr—BO—0r)} forF" —F, (3.8a)

(3.6)

e=>—eo(0) — N/{pr — B(0— 0r)} for F~ — F*. (3.8b)

Nucleation of the second phase will occur at the first instant during a thermoelectrical process at which
Eq. (3.8a,b) is met at some particle in the bar. As the temperature field 6(x, ¢) is nonuniform in general, this
will usually occur at some definite particle(s). However, noting that in an actual bar, imperfections would
play an important role in determining the nucleation sites, we may take the nucleation sites arbitrarily. In
this paper, we assume that the F~ — F7 transition would occur at x = 0 and the F* — F~ transition would
commence at x = L.

3.3. Kinetic relation
The kinetic relation that is used for our calculations is developed based on the thermal activation theory.

We follow the specific procedure taken by Abeyaratne and Knowles (1993) and Abeyaratne et al. (1994) to
derive the kinetic law for shape memory alloys. As a domain boundary propagates through the bar, the
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particle immediately in front of it jumps’ from one local minimum of G to another, and an explicit model of
the kinetic relation may be constructed by viewing this jumping process on a dipolar scale. The two local
minima correspond to the equivalent configurations in which the elementary dipole is pointing in the +
direction of the ferroelectric axis. In order to jump from one minimum of G to the other, the dipole must
acquire an energy at least as great as that represented by the relevant energy barrier: for a dipole under-
going F" — F~ transition this barrier is b;(0, e); for the F~ — F* transition, it is b3,(0, e). Under suitable
assumptions about the statistics of this process, the probability that the energy of a dipole is at least as great
as B is exp(—B/K0) where K is Boltzmann’s constant. The average rate at which dipoles jump from one
minimum to the other is taken to be proportional to the probability of exceeding the corresponding energy
barrier; we assume for simplicity that the proportionality factor is the same for the F* — F- and F~ — F*
transitions. The velocity § of the domain boundary, being the macroscopic measure of the net rate at which
dipoles change from phase j to phase i, is then taken to be the difference in the average rates associated with
the i — j and j — i transitions:

§= Rij{exp(—bji(Q, e)/rKH) — exp(—bij(Q, e)/rK@)}, (39)

where r denotes the number of dipoles per unit reference volume and Rj; is a positive proportionality factor,
related in part to the frequency with which dipoles attempt to cross over to the new phase.

Substituting Eq. (3.6) into Eq. (3.9) now leads to an explicit representation for the kinetic relations of the
F' < F~ transitions in the form § = V (£, 0):

§=2R exp[{pir/0r — (xB*/2)(0 — 0r)}(0 — Or)/rK0] sinh (f/2rK0), (3.10)

where R is the proportionality constant between the two phases. These kinetic relations automatically
satisfy the condition f§ > 0, so that any motion consistent with them will conform with the dissipation
inequality (2.4b). According to Eq. (3.10), the function ¥ ( f, #) increases monotonically with f, so that the
greater the driving force, the faster the speed of domain boundary. If the driving force f is small, so that
thermoelectrical processes take place close to phase equilibrium, then Eq. (3.10) can be approximated to
give a linear kinetic relation:

§ ~ (R/rK0) exp[{psx/01 — (1" /2)(0 — 0r)}(0 — 6r) /rK O] (3.11)

4. Macroscopic thermo-electrical response

In this section, the basic equations of Section 2 is specialized to the particular material model described
in Section 3. It follows from Eq. (3.2), that in each ferroelectric phase, the polarization intensity is related to
the electric field and temperature by

p=pr+e/y—pB(0—0r) for F' ferroelectric phase,

p=-pr+te/y+p(0—0r) for F ferroelectric phase, (1)
while the specific entropy is given, according to Egs. (2.2), (3.1) and (4.1), by
n=—Be/p+ (18/p)(0 - 0r) + clog(0/0r) — ix/0r for E, )
n=Pe/p+ (B /p)(0 - Or) + clog(0/0r) — 4r/0r  for F~.
In view of Eqgs. (2.11) and (4.2), the energy equation (2.3) simplifies to
V0 = (1 + Bg0)0, — (g/x)ed + ({/c)(0 — 0y) for FF, (4.3a)

Ve = (14 fg0)0, + (g/1)e0 + ({/c)(0 — 0p) for F~, (4.3b)
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which must hold at every point in the respective part of the bar except at a domain boundary that may exist;
here, v is the thermal diffusivity and g is a material constant, respectively, defined by

v==k/pc,  g=yB/pc. (4.4)

At a domain boundary, the jump condition (2.4a) must hold, which by Egs. (2.8), (3.3), (3.5) and (4.2) can
be written as

k(07 —07) = =2(pr + BOr)es, (4.5)
where § is its propagation velocity. The kinetic law at a domain boundary requires that

§=2Rexp[{pir/0r — (1B°/2)(0 — 01)}(0 — 1) /rK0] sinh(f/2rK0),

where f =2{pr— (0 —01)}e (4.6)

and 0 is the temperature at the domain boundary. Next, by integrating Eq. (4.1) with respect to x and
dividing it by the length of the bar L, we get the average polarization intensity p,(¢):

palt) = pr(25(0)/L — 1) + () /1 + (B/L) /

L
s(1)

s(1)
(0(x, 1) — Or) dx — /0 (0(x, 1) — Or) dx | (4.7)

Finally, the average electric displacement d,(¢) is, from Egs. (2.12) and (4.7),
dy(t) = eoe(t) + pa(2). (4.8)

The nonlinear partial differential equations (4.3a,b) involve coupling between electrical and thermal effects.
In the special case when the pyroelectric coefficients +f vanish, it is linear and uncoupled from electrical
effects. However, even in the case § = 0, the electrical and thermal effects are coupled through the jump
condition (4.5), which involves both electric field and temperature. This jump condition represents a
moving heat source whose magnitude and motion are not known a priori. The local heating at a domain
boundary characterized by Eq. (4.5) arises in part due to the effect of latent heat and in part due to the effect
of local energy dissipation; see Eq. (2.4b). It should be noted, however, that no local heating arises if the
domain switching occurs under the condition of phase equilibrium, i.e., f = 0.

Now, we outline how these equations combine in order to characterize the thermoelectrical response of
the bar. Suppose that initially, the entire bar is in the ferroelectric F~ phase, and the applied electric field
intensity e(¢) and the environmental temperature 0y(¢) are prescribed. The bar will remain in F~ phase for
some period of time 0 < ¢ < ¢ during which the temperature 0(x, ¢) is governed by Eq. (4.3b), which now
holds at every point in the bar, Eq. (4.7) with s(¢) set equal to zero, the initial condition (2.1), and the
boundary conditions (2.10). At the instant #, according to the nucleation criterion Eq. (3.8b) and the
discussion below it, a new domain boundary is nucleated at x = 0. In general circumstances, a number of
domain boundaries may be generated depending on how many defects for nucleation exist. Such com-
plexities cause no substantial differences and such a case can be treated in a manner entirely analogous to
the simple case described above. Therefore, during the next stage, the bar consists of F™ phase on
0 < x < s(¢) and F~ phase on s(¢) < x < L. During this stage, the location of the domain boundary s(¢), the
temperature field 6(x,#) and the average polarization intensity p,(¢) are controlled by Egs. (4.3a,b) and
(4.7), subject to the boundary conditions (2.10), the jump condition (4.5), the kinetic relation (4.6) and
appropriate initial conditions. If at some later time the entire bar happens to be composed of F* ferro-
electric, the reverse F™ — F~ transition will occur when Eq. (3.8a) is satisfied.

Before solving the problem, it is convenient to nondimensionalize the equations by introducing the
nondimensional variables:
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x,=x/L, s,=s/L, t.=tv/[* 0,=0/0r, d.=d/pr,

(4.9)
e.=e/ypr, fo=[/w% P =pu/pr, P =p/PT,
and the nondimensional parameters
ﬁ* = ﬂHT/pTa C* = é/Lz/CV, 90* = 90/9T7 g« = &pr, é* = Lé/pcva (4 10)

R.=LR/v, ir.=pir/ipr, K.=rKO0r/wy, N.=N/p3, &.= 1t.

Then, nondimensional kinetic relation is given by V.(f.,0.) =LV (f,0)/v.

It is convenient to rewrite the governing mathematical problem in terms of these nondimensional
variables. For simplicity, we shall omit the asterisks for Eqgs. (4.11)—(4.17) shown below. Then, the re-
spective equations (4.3a,b), (4.5), (4.6), (2.10), (4.7) and (4.8) can be rewritten as

0 = (1+ Bg0)0, — ge0 + (0 — 05) for 0 < x < s(1),

O = (1 + B20)0, + g0+ L(0 — 0,) for s() <x <1, (1)
0F — 0. = —2(g/B)(1 + Ples for x = s(¢), (4.12)
§=2Rexp[{ir — (B2/2)(0 — 1)}(6 — 1)/K0] sinh (f /2K0), @13)
where [ =2{1 — B(0—1)}e, '

0,=¢(0—0,) forx=0, 0,=—E0-0) forx=1, (4.14)
palt) = (25() = 1) + et) + f /( (x,6) = 1) dx — / 0, 1) — 1) ] (4.15)
dy(t) = eoe(t) + pa(2). (4.16)

The respective nucleation criteria in Eq. (3.8) for the F* — F~ and the F~ — F* transitions can be written
as

e<ey(0)+N/{1-pO—1)} for FF —F,

e>—e(0) —N/{1—BO—1)} for F" — F". (4.17)

This “moving boundary problem” is similar to a classical Stefan problem but with two important differ-
ences: (i) here, the temperature of the moving interface 0(s(z), ¢) is not known in advance, and instead, the
kinetic relation (4.13) is to be enforced, and (ii) the right-hand side of the energy jump condition (4.12)
involves the electric field e(¢). We solved the problem at hand by using the finite difference method that was
developed by Crank (1957) and then adapted by Kim and Abeyaratne (1995) to solve a moving boundary
problem associated with a stress-induced phase transformation.

5. Results

In this section, we present the results of some specific calculations based on the model described in
Section 4 and the finite difference algorithm used by Kim and Abeyaratne (1995). We will only describe the
results associated with electrical loading, where the rate of electrical loading is prescribed and the envi-
ronment temperature 0y is held constant. In fact, we shall always be concerned with a bar that is entirely in
the F~ ferroelectric phase to start with, and we shall load and unload it electrically at constant loading-rates
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+(de/dr). Thus, the sequence of events underlying all of the calculations to be described below are as
follows: we consider a bar with ends satisfying thermal boundary conditions (2.10) that is initially entirely
in the F~ ferroelectric phase. Its initial temperature is the same as that of the surrounding environment. The
bar is subjected to a constant electrical loading rate +(de/d¢). At some later instant, the nucleation criterion
(3.8b) is satisfied and F* ferroelectric phase is nucleated at the left end of the bar. The F*/F~ domain
boundary emerges at this point and propagates to the right end of the bar. When it reaches the right end of
the bar, the specimen is completely in the F* ferroelectric phase. Then, electrical unloading is carried out at
the constant electrical loading rate —(de/d¢). During this process, F~ ferroelectric phase is nucleated at the
right end of the bar, and the F*/F~ domain boundary moves toward the left end of the bar, transforming
the specimen from the F* phase to the F~ phase. The temperature of the surrounding environment remains
fixed at 6, throughout the process.

The values of the various nondimensional material parameters that we used in our calculations were as
follows:

B, =0.4094, (, =3.029, 0, =0.583, g =6.058x10", ¢& =9.253x107

R, =88014, Jr,=1.04x107° K, =27.59, N, =9485x107 &, =7.116x 107* 1)
All of these values are of the correct order of magnitude for a BaTiO; ceramic except R, and they are
consistent with the values of the material parameters given in Kim (2000). The value of the mobility co-
efficient R, was chosen arbitrarily so as to provide reasonable response curves.

Fig. 4 shows the temperature distribution along the bar at a fixed instant of time. The figure has been
drawn at a particular instant during electrical loading at which the domain boundary is located at x = L/2.
The three curves in the figure correspond to three different loading rates. It is seen that as the loading rate
increases, so does the maximum temperature. Similar temperature distributions have been observed in the
experiments done on shape memory alloys by Rodriguez and Brown (1975). At all the loading rates shown
in the figure, the material behind the domain boundary is much hotter than the material ahead of it. This is
because at the loading rates in the figure, there has not been sufficient time for the heat to diffuse along the
bar. The fact that the temperature in the region ahead of the domain boundary is below the temperature of

12 -
L7 Mp_ = 1*10°
————— eLY¥p, =5*10°
S A Lk
-0.2
0 025 08 078 1
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Fig. 4. Temperature distribution along the bar at the instant when s = L/2 for three different electrical loading rates.
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the environment can be predicted from Eq. (4.3b), which governs the behavior of the bar consisting of only
the F~ variant initially. At ¢ = 0, the left-hand term and the third term in the right-hand side of Eq. (4.3b)
vanish from the initial condition (2.1). Therefore, when the electrical loading rate (de/d¢) is positive, 0,
should be negative and the temperature of the bar has to be decreased. We also carried out the calculations
for electrical unloading and observed similar temperature distribution. That is, the temperature is higher in
the region behind the domain boundary, while it is lower in the region ahead of the domain boundary.

Fig. 5 shows how the temperature at the domain boundary varies with its location during electrical
loading. The three curves in the figure correspond to three different electrical loading rates. As expected, the
temperature of domain boundary increases with the increase in the loading rate. At a given loading rate, the
temperature of domain boundary increases as it moves toward the right end of the bar. Near the end, it
tends to increase rapidly due to the thermal boundary condition at the right end of the bar. We also carried
out calculations for the reverse F* — F~ transition and observed a similar increase in the temperature of
domain boundary.

Fig. 6 shows the overall electric field-electric displacement response of the bar at three different electrical
loading rates. We observe that the hysteresis loops rotate counterclockwise and increase in area as the
loading rate increases. Similar behaviors have been observed for the isothermal responses of ferroelectric
materials by Kim (1998, 2000). We also computed the isothermal responses of the model at which the
temperature in the bar is always equal to the temperature of the environment, and compared them with the
responses shown in Fig. 6. We found that the heights of hysteresis loops in isothermal responses are smaller,
even though the difference is relatively small at the present loading rates, than those of hysteresis loops
shown in Fig. 6. It is because the temperature of the bar is increased due to the heat generated from a
moving domain boundary and according to the kinetic relation (3.10), the speed of domain boundary is
decreased. The responses shown in the figure have been observed experimentally (e.g. Wieder, 1957;
Campbell, 1957).

Fig. 7 shows how the average temperature of the bar increases with the number of cycles of applied field
at three different electrical loading rates. The average temperature of the bar has been obtained by inte-
grating the temperature with respect to x and dividing it by the length of the bar. In the figure, we observe

3 :
LT ap_=1*10°
——— el fXp, =5*10°
- ELY Xp, = 1*10°

Fig. 5. Temperature at the domain boundary versus position of domain boundary for three different electrical loading rates.
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Fig. 6. Overall electric field-electric displacement curves of the bar for three different electrical loading rates.
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that the average temperature increases rapidly during the initial loading cycles, but soon it approaches a
steady state temperature as the number of cycles is increased. This may be explained as follows. Initially,
the temperature difference between the bar and the environment is relatively small and the rate of heat
transfer from the bar to the environment is smaller than that of heat generation inside the bar. This dif-
ference in the rate of heat transfer causes the initial rapid increase in the average temperature of the bar. As
the temperature of the bar approaches the steady state temperature, the rate of heat transfer out of the bar
is nearly in balance with the rate of heat generation in the bar and finally the bar is kept at a constant steady

50

Fig. 7. Average temperature of the bar versus number of cycles of applied field for three different electrical loading rates.
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Fig. 8. Two electric field-electric displacement curves, one corresponding to initial loading cycle and the other corresponding to loading
cycle at steady state.

state temperature. It is seen that the steady state temperature is higher at a faster loading rate. This is
qualitatively in conformity with the experimental observations of Hill et al. (1996).

Fig. 8 compares two electric field-electric displacement responses at the fastest loading rate shown in Fig.
7: the solid one corresponds to initial loading cycle and the doted one to the loading cycle at steady state.
That is, the former one is the response of the bar at the temperature of the environment 70°C and the latter
one at the steady state temperature 113°C. It is seen that as the average temperature of the bar increases the
width of hysteresis loops gets smaller due to the nonzero pyroelectric coefficient and the height of hysteresis
loops gets bigger owing to the slower speed of domain boundary at the high steady state temperature.
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